4,603 research outputs found

    Characteristics and classification of A-type supergiants in the Small Magellanic Cloud

    Full text link
    We address the relationship between spectral type and physical properties for A-type supergiants in the SMC. We first construct a self-consistent classification scheme for A supergiants, employing the calcium K to H epsilon line ratio as a temperature-sequence discriminant. Following the precepts of the `MK process', the same morphological criteria are applied to Galactic and SMC spectra with the understanding there may not be a correspondence in physical properties between spectral counterparts in different environments. We then discuss the temperature scale, concluding that A supergiants in the SMC are systematically cooler than their Galactic counterparts at the same spectral type, by up to ~10%. Considering the relative line strengths of H gamma and the CH G-band we extend our study to F and early G-type supergiants, for which similar effects are found. We note the implications for analyses of extragalactic luminous supergiants, for the flux-weighted gravity-luminosity relationship and for population synthesis studies in unresolved stellar systems.Comment: 14 pages, 14 figures, accepted by MNRAS; minor section removed prior to final publicatio

    A recalibration of IUE NEWSIPS low dispersion data

    Full text link
    While the low dispersion IUE NEWSIPS data products represent a significant improvement over original IUE SIPS data, they still contain serious systematic effects which compromise their utility for certain applications. We show that NEWSIPS low resolution data are internally consistent to only 10-15% at best, with the majority of the problem due to time dependent systematic effects. In addition, the NEWSIPS flux calibration is shown to be inconsistent by nearly 10%. We examine the origin of these problems and proceed to formulate and apply algorithms to correct them to ~ 3% level -- a factor of 5 improvement in accuracy. Because of the temporal systematics, transforming the corrected data to the IUE flux calibration becomes ambiguous. Therefore, we elect to transform the corrected data onto the HST FOS system. This system is far more self-consistent, and transforming the IUE data to it places data from both telescopes on a single system. Finally, we argue that much of the remaining 3% systematic effects in the corrected data is traceable to problems with the NEWSIPS intensity transformation function (ITF). The accuracy could probably be doubled by rederiving the ITF.Comment: Submitted to ApJ Supplement, 35 pages, 13 figures, LaTeX - AASTEX aas2pp4.st

    A Search for Intrinsic Polarization in O Stars with Variable Winds

    Get PDF
    New observations of 9 of the brightest northern O stars have been made with the Breger polarimeter on the 0.9~m telescope at McDonald Observatory and the AnyPol polarimeter on the 0.4~m telescope at Limber Observatory, using the Johnson-Cousins UBVRI broadband filter system. Comparison with earlier measurements shows no clearly defined long-term polarization variability. For all 9 stars the wavelength dependence of the degree of polarization in the optical range can be fit by a normal interstellar polarization law. The polarization position angles are practically constant with wavelength and are consistent with those of neighboring stars. Thus the simplest conclusion is that the polarization of all the program stars is primarily interstellar. The O stars chosen for this study are generally known from ultraviolet and optical spectroscopy to have substantial mass loss rates and variable winds, as well as occasional circumstellar emission. Their lack of intrinsic polarization in comparison with the similar Be stars may be explained by the dominance of radiation as a wind driving force due to higher luminosity, which results in lower density and less rotational flattening in the electron scattering inner envelopes where the polarization is produced. However, time series of polarization measurements taken simultaneously with H-alpha and UV spectroscopy during several coordinated multiwavelength campaigns suggest two cases of possible small-amplitude, periodic short-term polarization variability, and therefore intrinsic polarization, which may be correlated with the more widely recognized spectroscopic variations.Comment: LaTeX2e, 22 pages including 11 tables; 12 separate gif figures; uses aastex.cls preprint package; accepted by The Astronomical Journa

    Amplitude variability in satellite photometry of the non-radially pulsating O9.5V star zeta Oph

    Full text link
    We report a time-series analysis of satellite photometry of the non-radially pulsating Oe star zeta Oph, principally using data from SMEI obtained 2003--2008, but augmented with MOST and WIRE results. Amplitudes of the strongest photometric signals, at 5.18, 2.96, and 2.67/d, each vary independently over the 6-year monitoring period (from ca. 30 to <2 mmag at 5.18/d), on timescales of hundreds of days. Signals at 7.19/d and 5.18/d have persisted (or recurred) for around two decades. Supplementary spectroscopic observations show an H-alpha emission episode in 2006; this coincided with small increases in amplitudes of the three strongest photometric signals.Comment: MNRAS, in pres

    FUSE Observations of a Full Orbit of Hercules X-1: Signatures of Disk, Star, and Wind

    Full text link
    We observed an entire 1.7 day orbit of the X-ray binary Hercules X-1 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Changes in the O VI 1032,1037 line profiles through eclipse ingress and egress indicate a Keplerian accretion disk spinning prograde with the orbit. These observations may show the first double-peaked accretion disk line profile to be seen in the Hercules X-1 system. Doppler tomograms of the emission lines show a bright spot offset from the Roche lobe of the companion star HZ Her, but no obvious signs of the accretion disk. Simulations show that the bright spot is too far offset from the Roche lobe to result from uneven X-ray heating of its surface. The absence of disk signatures in the tomogram can be reproduced in simulations which include absorption from a stellar wind. We attempt to diagnose the state of the emitting gas from the C III 977, C III 1175, and N III 991 emission lines. The latter may be enhanced through Bowen fluorescence.Comment: Accepted for publication in The Astrophysical Journa

    The Influence of Stellar Wind Variability on Measurements of Interstellar O VI Along Sightlines to Early-Type Stars

    Full text link
    A primary goal of the FUSE mission is to understand the origin of the O VI ion in the interstellar medium of the Galaxy and the Magellanic Clouds. Along sightlines to OB-type stars, these interstellar components are usually blended with O VI stellar wind profiles, which frequently vary in shape. In order to assess the effects of this time-dependent blending on measurements of the interstellar O VI lines, we have undertaken a mini-survey of repeated observations toward OB-type stars in the Galaxy and the Large Magellanic Cloud. These sparse time series, which consist of 2-3 observations separated by intervals ranging from a few days to several months, show that wind variability occurs commonly in O VI (about 60% of a sample of 50 stars), as indeed it does in other resonance lines. However, in the interstellar O VI λ\lambda1032 region, the O VI λ\lambda1038 wind varies only in \sim30% of the cases. By examining cases exhibiting large amplitude variations, we conclude that stellar-wind variability {\em generally} introduces negligible uncertainty for single interstellar O VI components along Galactic lines of sight, but can result in substantial errors in measurements of broader components or blends of components like those typically observed toward stars in the Large Magellanic Cloud. Due to possible contamination by discrete absorption components in the stellar O VI line, stars with terminal velocities greater than or equal to the doublet separation (1654 km/s) should be treated with care.Comment: Accepted for publication in the Astrophysical Journal Lette

    Hercules X-1: Empirical Models of UV Emission Lines

    Get PDF
    The UV emission lines of Hercules X-1, resolved with the HST GHRS and STIS, can be divided into broad (FWHM 750 km/s) and narrow (FWHM 150 km/s) components. The broad lines can be unambiguously identified with emission from an accretion disk which rotates prograde with the orbit. The narrow lines, previously identified with the X-ray illuminated atmosphere of the companion star, are blueshifted at both phi=0.2 and phi=0.8 and the line flux at phi=0.2 is 0.2 of the flux at phi=0.8. Line ratio diagnostics show that the density of the narrow line region is log n=13.4+/-0.2 and the temperature is T=1.0+/-0.2x10^5 K. The symmetry of the eclipse ingress suggests that the line emission on the surface of the disk is left-right symmetric relative to the orbit. Model fits to the O V, Si IV, and He II line profiles agree with this result, but fits to the N V lines suggest that the receding side of the disk is brighter. We note that there are narrow absorption components in the N V lines with blueshifts of 500 km/s.Comment: To be published in the Astrophysical Journa

    Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance

    Get PDF
    We have conducted a programme to determine the fundamental parameters of a substantial number of eclipsing binaries of spectral types O and B in the Small Magellanic Cloud. New spectroscopic data, obtained with the two-degree-field multi-object spectrograph on the 3.9-m Anglo-Australian Telescope, have been used in conjunction with photometry from the Optical Gravitational Lens Experiment (OGLE-II) database of SMC eclipsing binaries. Previously we reported results for 10 systems; in this second and concluding paper we present spectral types, masses, radii, temperatures, surface gravities and luminosities for the components of a further 40 binaries. The full sample of 50 OB-type eclipsing systems is the largest single set of fundamental parameters determined for high-mass binaries in any galaxy. We find that 21 of the systems studied are in detached configurations, 28 are in semi-detached post-mass-transfer states, and one is a contact binary. Each system provides a primary distance indicator. We find a mean distance modulus to the SMC of 18.91+/-0.03+/-0.1 (internal and external uncertainties; D=60.6+/-1.0 kpc). This value represents one of the most precise available determinations of the distance to the SMC.Comment: paper accepted on 22 November 2004 for publication by MNRAS; 26 pages, 6 tables, 12 figure
    corecore